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A Finite-Difference Method for Parabolic Differential 
Equations with Mixed Derivatives 

By Jan Krzysztof Kowalski 

Abstract. In a recent paper, P. Jamet constructed a positive difference operator for a 
parabolic differential operator whose coefficients are singular on the boundary, and 
proved the existence of a unique solution of the boundary-value problem for the differential 
equation using discrete barriers. In the present paper, Jamet's results are extended to the 
parabolic operator with mixed derivatives. 

I. Introduction. Let G be a bounded domain in R"+' and P = (xi, ... , x", t) 
denote an element of G. Let L be a differential operator of the form 

(1.1) Lu(P)- E a;j(P) d ( 

+ EZ bi(P) (P) - c(P)u(P) - d(P) (p). 

The coefficients ai = aji, bi, c and d are smooth functions in the interior of G, 
but they may be singular as P approaches the boundary (G of G. The existence of the 
solution and the convergence of its approximations depend on the type of the singu- 
larities. We assume that the operator L is parabolic, i.e. 

(1.2) VP E G V(, *,) (0, 0) i j(P)tit > 0, 

c(P) _ 0, d(P) > 0. 
Let r, be a nonempty subset of OG; r2 = G- r; f be a bounded function 

defined on d which is smooth in the interior of G, and let g E C(G). We consider the 
boundary-value problem 

(1.3) Lu(P) = f(P), P E G, u(P) = g(P), P E rl. 

We want the solution u to be continuous in G 'U rl, bounded in G and of the class 
c2(G). 

In [3], P. Jamet investigated problem (1.3), however, without mixed derivatives. 
In the present work, Jamet's fundamental theorem (Theorem 2.1) is applied to the 
problem with mixed derivatives. 

II. Finite-Difference Operators of Positive Type. Let h = (hi, * , h", r) be a 
parameter, mi-integer, and for each h, 
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Gh= (XI * Xn t) EG = mih,, i = 1, , n; t = mo'r. 

Let GA and OGA be two complementary nonempty subsets of Gh. We assume that 

max d(P, dG)-O ash-+O. 

(We denote by d(B, B') the distance between two sets B and B' in R"+l.) 
To each point P E Gh we associate a set l(P) C dh which satisfies 

P (E M(P) and max max d(P, P') -O as h -+O, 
PE G P'G fL(P) 

and which is called the mesh-neighborhood of P in Oh. 

We say that ch is simply connected, if V P G G, 3 a sequence of points PO, * * * 
Pk, such that PO = P; Pi C Gh, 0 i - k - 1; Pk G a?Gh and P,.1 C t(Pj) for 
0 < i ? k - 1. 

Let v be a function defined on Gh. We define the finite-difference operator 

(2.1) Lhv(P) = E A(P, P')v(P'). 
P ' ez(P) 

If, for all P C Gh, 

(2.2) A(P, P') > 0 for P' P P; E(P) , A)(P, P') 5 0, 
P'EEM(P) 

then the operator Lh is said to be "of positive type" or "positive". 
The following maximum principle holds: 
Let LA be of positive type, Gh be connected and v be any function defined on G, 

and such that VP C G,,, Lhv(P) > 0; then 

max v(P) < max(O, max v(P)) 
P GGj PGaoG 

Now, we introduce some notations and definitions. For any given subdomain G' 
of G, we define: 

Ch =,C \ O', G -={ P E Gh r) 0: (P) C Gh'}, aGI = Ch - GA ' 

Definition 2.1. Let G' C G. We say that Lh is consistent with L in the norm 
Ch(Gh), if 

V ,, (E C2(G ), max ILh'p(P) - Lo(P)j 0 as h -O 0. 

Definition 2.2. Let G' C G, H be any set of parameters h, { Ch} ,H% be a family of 
nets and f { v(P, h)} be a family of mesh-functions defined for each h on Gh EE I 0}. 
We say that the family 5Y is equicontinuous in G', if 

Ve >0 3,q > 0 Vh E H VP, P' C G,% 

d(P, P') < 7j => jv(P, h) - v(P', h)l < e. 

Definition 2.3. Let G' C G. Let { v(P, h)} be a family of mesh-functions defined 
on Gh E { G,}, and let u be a function defined on G'. We say that v(P, h) converges 
uniformly to u(P) on G', if 
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max Iv(P, h) - u(P)l -O as h ->O. 

Now, let us consider an infinite set H = {h} of vectors h with zero as an accumula- 
tion point and the corresponding family {L, } of operators. 

Definition 2.4 Let Q E dG. A function B(P, Q) is a strong (local) discrete barrier 
at the point Q relative to the family {L,}, if there exists a neighborhood NO of the 
point Q in the relative topology of G such that: 

(2.3a) B(., Q) E C(NQ), 
(2.3b) B(Q, Q) = 0 B(P, Q) < 0 VP E NQ {Q?,, 
(2.3c) VP E NQh LhB(P, Q) + E(P) _ 1 for h small enough. 
Now, we consider the following system of linear equations 

(2.4) Lhv(P, h) = f(P), P E Gh, v(P, h) = g(P), P E OGh. 

It follows from the maximum principle that, if Lh is positive and Gh is simply 
connected, then the system (2.3) has a unique solution v(P, h). 

We shall assume that Lh is positive and G6 is connected. With these assumptions, 
P. Jamet proved the following theorem, [3]. 

THEOREM 2.1. Let f = { v(P, h)} be the family of the solutions of (2.3) for all h 
sMall enough. Let us assume 

(i) There exists a function (p E C(G) such that LMO(P) _ 1, V P E Gh andfor all h. 
(ii) For any G' C G' C G and for any sequence { v(P, hj); h, -* O} C 5, there 

exists a subsequence which converges uniformly on G' to a solution of the equation 
Lu = f. 

(iii) At each point Q E r,, there exists a strong discrete barrier relative to the 
family {Lh }I 

Then, problem (1.3) has at least one solution u(P). Moreover, if this solution is 
unique, v(P, h) converges to u(P) as h -O 0, uniformly in G-N(r2), where N(r2) is 
an arbitrary neighborhood of r2. 

In the subsequent sections, we investigate when the assumptions of Theorem 2.1 
are satisfied. 

III. Construction of the Finite-Difference Schemes for the Problem with Mixed 
Derivatives. Let h, r be positive numbers and G0 be the rectangular net with the 
step h for the space variables (xl, ... , xj) and r for the time t. At each point P E Oh 
we define a vector of positive integers [mj]i=, ..., . 

At the point PO E G, we define a set 
n 

9to(po)= U {P = Po + eimih, P = PO - eimih} 
i 1 

n n 

'U U U {P = Po + eimih + ejm,h,sgn a1,(Po), 
i-l i-i+l 

P = PO - e,m,h sgn ai,(Po) - eim,h} 

UI {PO, PO - en+0T}, 

where ei is the versor of the xi-axis (1 < i ? n) in R'+, and enll the versor of t-axis. 
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By Tl0(P0) we denote the sum of all segments joining the point P0 to each of the 
points of Mr0(P0). Let 

Gh= {P E Gh: ao(P) C G}, M = max mi(P), 
PE G%A0 

(3.1) rl = { =P = (xl, **, x , to) E - : 

min it- tl < T and V i min Ix; --4x < hMiJ. 
-(l,C. .)ers ... er1 

We choose the sets Gh and aGh arbitrarily, provided rli C OGh and G? C Gh. At 
each point P E G" we take OT(P) = -9 o(P), and at the points P E G - GO we define 
M(P) arbitrarily, provided DT(P) n Gh z 0; this choice guarantees the connectedness 
of C, for h small. At each point P E G, - we define the operator Lh arbitrarily, 
provided conditions (2.2) are satisfied at that point. For P E G." we take 

n ~~~~n nn r 

LAv(P) = a,(P)V,i, + E E ai4(P)v,,+,- F2 E a(P)v,i_ 
(3.2) s1iliils1ii 

+ O i,(P)(v,i + v.j)/2 -c(P)v - d(P)v1, 
*-1 

where 

v'i(P) = [v(P + eimih) - v(P)]/mih, 

v'j(P) = [v(P) - v(P - eimih)]/rmh, v,'ii = (v i); 

V, if(P)-= [v(P + e,mih + eim1h) - 2v(P) + v(P -ei mih- e;mh)]/h2mimi, 

v,i_i(P) = [v(P + e,mrh - e,mih) - 2v(P) + v(P -eimih + ejmih)]/h2m;mj, 

v(P) = [v(P) - v(P -enal1)]/Ts 

a+J(P) = [ai,(P) + laii(P)I]/2, a7,(P) = ai,(P)- a+(P); , i = 1, *... n; 

and 

(3.3) ac,(P) = Ai(P) e ai,(P) - m la,i(P)I, 3,i(P) = b;(P). 
i-i;joi Mi 

If the operator Lh is positive, then its coefficients satisfy the following system of 
inequalities 

Ai(P) - mih Jb1(P)l > O. 

If mih Ibi(P)I = o(A(P)) for P near the boundary dG, then the upper system is 
equivalent to the system 

(3.4) a11(P) - E ' la(P)l > 0. 
i-i;iji mi 

Now, we shall prove the existence of the solution of system (3.4). Let 
B = [bir]l.r . ..., be an arbitrary matrix and assume that 0 ? k ? n - 1; k < i, 
j ? n. We denote 
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|blb *.* * bbi,kI bl 

bk l kk l bk_ 
, . . . bk b bkl ... 

bkkbk 
bkl 

. 
* b bk,k-l bk b 

bil ... bi k-1 blk bil .. bl,k-I bi i 
k ........................ .............................. k_ 

Bi..- bb-l.k bkl -, bk-1 * bk-l.k-i bk_i,, 

bil ... bi k-1 bjA; bil ... bi k-I bi, 

where IBI = det B, 
Let Bk(m, p) be the minor of Bk after striking out the mth column and pth row, 

let Bk(m) = Bk(m, k). We introduce the analogous notation for the minors of B^., 
B. and B*i. 

LEMMA 3.1. Using this notation, the following equality is valid: 

(3.5) B BIi- B.B.i = B iB,j . 

Proof. We carry out the proof by induction. For I = 1 the formula (3.5) is valid 
(we take B' = 1). Suppose that the theorem is true for I = k - 1 > 1. 

We compute the left and right side of the formula (3.5) for I = k. 

k-1' 

Left = B{A; (-l)k+mbijBkj(m) + bijBk-] 

k-1 

- B k { (-l)k+mbimB(m) + bikB;-i 
ml1 

k-1 

- (- l)k+mbi[BkB"(m) - Bk(m)Bki] + bfjBkBk-i - bikBkiBki. 

We compute now the term in square brackets, using the Laplace formula. 

k +k~~k- 
eBkB(m) - Bk(m)B. j B" (m)[Z ( 1)rnPbBk(m P) + (-I)"' bkBk(m)] 

p-1 

- Bk(n) 2 (-l)"+PpbmB %(M, P) + (-l)+k B'i(m) 
p -1 

k-1 

- ~ (- 1)rn+bpm[Bk(m, p)B %(m) - B (m, p)B`(m)]. 
p-1 

We introduce a matrix C(m, p) = [c,8] with the elements: 

1? r < p p<r_k- 1 r=i 

1 ? s < m bra br+lis bps 

m s k - 1 br.s+l br+1,.+1 bv,s+ 

s - j bri br+l,ji bJp 

Then 
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B. (m) = (-l)kiP[C(m, p)i B. A(m, p) = [C(m, p)],.71 

Bk(m, p) = [C(m, p)k Bk(m) = (-li1-v-v[C(m, p)]'-' 

Using the inductive assumption we get 

B 3(m)Bk(m, p) - Bk(m)Bkj(m, p) = -Bki(m, p)B"i(m). 

Hence, 
k-i k-i 

Left = E (-l)k+mbtr E (-1)m+v+lb,mBki-(m, p)Be,(m) 
rn- p-i 

+ bijBkBk- - bikEk Bki. 

But 
k-1 

Right = Bki[Y2 (-l) +k+ibimBkA+(m) - biAB'i + b.iBk 

k-i k-i 

= E (-1)A+mbimBki+(m) ( (-l)v+mb,mBAi(m, p) 

-biBB A;Bki + biiBkBk- = Left, 

which concludes the proof of the lemma. 
For each P E G we set 

bi(P)= aii(P), i= j, 

= -aii(P)j, i 0j. 

THEoREM 3. 1. If 

n R 

3,y > O 3 M >0O VP C- G dQ1 (t. , b.i (P)tjtj _ y ts , 
i, j-i i-i 

and jbi,(P)l < M, 

then the system of inequalities (3.4) has an integer solution and M, given by (3.1) are 
bounded. 

Proof. Let P be a fixed point. We transform (3.4) to the form 

biili > 0, where i,i = /lmn. 
j-1 

For i = 2, 3, * , n, we multiply the first inequality by bi, and the ith by b,1 and 
sum them. Using the inequalities bi > 0 and bij ? 0 for i $ j, we get 

n 

, Mj(bjjbij -blbi) > 0. 
i-2 

Let b'2) = (blbij - bijbj1)/bjj and, for k = 2, 3, ,n- Iand i, j k + 1, 
let b - = (bkkb,, - b(;b,k)/b(kk. Using Lemma 3.1 we deduce that 

(3.6) b'+" = BAi[JI b )]. 
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For k -1 formula (3.6) is true. Suppose that it is valid for k m - 1 > 1. Then 
m- 2 /m1 -2/ 

b(m+l) _ [BBm - Bm_Bm.[ b )j b/(m) = m- m 1/ Uz j _ LDi iD , ;sX, j . 1l UI I / Umm D i u / mm 

m-2 

(m- M-) I in I 

1 Bm+1 b m+1 

b 
I 1 

2 
b 

therefore the formula (3.6) is true. 
It follows from the assumption of the theorem that there exist two positive 

numbers Mo and CO (independent of P) such that Vk Vi, j > k, 'b*. > Co, 
jb<, I < Mo. Moreover, for i # j, b3` - (b`kb - b k )/bb b < 0, because 
bbk > 0 and the other three numbers are nonpositive. Therefore, for each k, we get 
the following system of inequalities: 

n 
b b(k,) U > O, i = k, k + 1, * ,n. 

j8~k 

For k = n - 1 the system consists of two inequalities: 

(3.7) bnn-1) -1 + b1n ,j). > 0; b n1)n + b,nn )An > 0. 

We put ,I = I and set out to find the rational numbers Al4, *- , ,uA- and C, such 
that (3.4) is satisfied for Ai = C,u and I l/J integer. From (3.7), 

jUn-1bn < ,f b ! n-, | 
n_ < bnn 

1 
b( -1) Jn lb(n-l Un- 1,n-1 |wnIn- 

and 

b(n- 1) b (n1) lb (na) C Ib,nn - - Ib 21Inn = 

| nn 
( n- 11 jbn_) in- MQ 

For 

n -. E(3 Co+1)+1]/E(3C?+ )' 

the following inequalities are valid: 

P _ [IbM, I (3 
M 

+ 1 + I]/E(3 MO + I) _ C3 bn-l,3I-+ Co / ln- 3M0 + C0o 

n-LlI E(3 MO + I)+2]E(3M + I 

tnL-1> CJ C(n-1) 
<Ibn 1~ +l 2CO < bnn Co 
b n_-1 3M0 Ib(,-1I 3MO 

We can take A- = p. Then 

- > 3M+C + =Co ,-l 
and An-I < 

Co+ 3M3 0 n_ 



682 JAN KRZYSZTOF KOWALSKI 

Moreover, 

bn_lM,n-MI-, + b %.tl 2 lbn_l + bnn" 1 C0 - lbnll > n n-,nmn n-l, n-ln-13M0 + Co1Il l W + Co 
and 

b + b ,nZ) 2 -lb n, + + b ( 

= n(_) C0 1) W nn 

bn,, -lb -I2 2C0 co_ 

Let 

K_1= min ~ ~ _ 
\ - n3M0 + CO' 3 / 

Then 
n 
E b("-lj.4 > K"_1, I - n - 1, n. 

8-n- n 

Suppose that we have defined ,u, * , ,u+l such that bk +'.u 
>;Kk+l and v., > > v, > O for I-k + 1, ,n, where K1, v,, v- depend only"on 1, Mo 

and CO. Now, we must define /4, K1, Vk, v- such that 

n 

E bl 1 )i > Kk, I = k, ,n and v' > /4 > Vk > O. 
ak 

This system is equivalent to the system 
n I(k) n bk 

- -p,</4< - - k, I = k + 1, , n. 
s=Ek+l skk k+l bIk 

The following inequalities hold 

0k (k) < V; 
a=k+l bkk cO ,-k+l 

n bk) b(k) = n 
b(k+l) Kk+l 

8 k+i b11 bkkk / ,k+lblk ; Mo 

Let 

E + 2~~~~ k E0LkE M 2]/E(3 KM? + / ? o~E 3 Kk+ 

Then 

+ 3M+K+K < Ik = /5k + 3M0 a lk+ s b I - 

therefore 

Kk + MOn ' JCo + 2KkM+ 
3 Mo + Kk + Co0 s-k+ 1 3 Mo 
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and 

Eb& , > bk( [ bkF E I + Kk+I b(kI /4 > Co Kk+l 
-k b4k+ bk 3Mo + Kk+l 

J 
k al 3Mo + Kk+l 

and, for I > k, 

Is _ t1[ b,, 3M0 J 3-k+l 

We can then take 

Kk= m in(Iii 
(3 '3Mo + Kk+j) 

We have the estimates 

CO > Kk > CO +l/(3Mo + 3Co)n , Vk > [Co/(3 Mo + 3Co)]nk+l, 

Ik < 5 (n -k)2 (n -k + 1) (MO) 

For ,A4, * * A, ,u, defined as before, we take 

= . M 1cm [E(akE( K + I)) + 2] 

where lcm denotes the least common multiple of the numbers in brackets for k = 1, 
**, n- 1; Kn= Co, on = Ib ,)I /b(_ i' 1. Then the numbers m, satisfy the inequality 

vi 
-1 

CO 
a-k+1 E(k + 1)+2] 

M + 3Co)i+l n j n-E[5 M 3 (MO)n 

.E(3Mo(3Mo + 3Co) nk 1) .E 
nC-k 

+ 
IFJ 

The estimate is independent of P, and the theorem is proved. 
In the particular case, if we can take for each point P E Gh the same numbers mi, 

satisfying (3.4), then we can consider, instead of the square net, a rectangular net 
with steps hi = mih (i = 1, 2, ... , n). Then the mesh-neighborhood of each point P 
consists of the mesh-points which lie nearest to P. In this case, the operator L need not 
be uniformly elliptic, as the matrix [b , need not be positive definite near the bound- 
ary. 

However, if the coefficients of L are singular on the boundary, then the operator 
Lh given by (3.3) is not always of positive type. In this case we define following P. 
Jamet: 

at(P, h) = exp I ... , x, y x1+, x, t) dy, 

ci-(P, h) = exp A1(x, xj l y, x+, x t) dy 
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and 

(3.8) tai(P, h) = 
Ai(P)[a4(P, h) + ai(P, h)I/2, 

#3(P, h) = Ai(P)[a+(P, h) - a(P, h)]/h1. 

We substitute the ai and f3i as defined in (3.2) for those i, for which Ai is singular. 
The operator corresponding to (3.8) is always positive, because 

a1v,j,t + ji(v,i + v,1)/2 = Aj[a v - v,]1hj 

and the coefficients at and a- are positive. 
LEMMA 3.2. The operator (3.2) with the coefficients (3.8) is consistent with L in 

the norm CQ(GI) for any G' C G' C G. 
Proof. For G' there exist the numbers N > 0, E > 0 such that 1bi(P)/A1 (P)l ? N 

and A,(P) > E for P C G'. Therefore 

+ (~~hi b&(P) + h ~ bi (P) at (P, h) = exp i2 A((P) + (hj) = Aj+() + O(h); 

a- (P, h) I hi bi(P) + O(h2). 2 Aj(P) 

Hence, 

(3,9) a,(P, h) = Ai(P) + O(h2), Oi(P, h) = bi(P) + O(hi). 

Because 

V,i,j + V,f,} = V,i+i m M- Iv . 

and 

V.,; + v = v ,i. + !i v,; _ i 

we have 

n ~~~~~~~n n 

Lhv(P) = 2 [Ai(P) + O(h2)]V. j, + a t+(P)vi+i 
i-i s-i i-i+l 

n- E a- (P)v.i-i + F [bi(P) + O(h;)] i' + c' c(P)v - d(P)v 
i-1 i-i+l s-2 2 

= : ([ai.(P) + O(hi)Iv,i,i 
i-1 

+ Z Z {a s(P)(v, i + v,i,) + a- (P)(v, j, + v,t,,)J 
i-Ei i=,+1 

+ Z [bi(P) + O(hi)] V' v,, - c(P)v - d(P)v,. 
2 

Using this equation, we deduce that for v E zf2(G') 
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max Lhv(P) - Lv(P)| = O(h + ). 
PEGh' 

We take hi/T = const, therefore maxpeGh' ILhV(P) - Lv(P)l = O(h). 
Moreover, if ai, bi, c and d E C(G), then in any G' C G' C G the difference 

quotients of the order p of ai, pi, c and d are uniformly bounded for all P E GI and 
for all h sufficiently small. 

IV. Sufficient Conditions for Uniform Boundedness of the Solutions. In this sec- 
tion we study the existence of a function so(P) which satisfies condition (i) of Theorem 
2.1. The existence of such a function guarantees the uniform boundedness of the 
approximations v(P, h). The following criteria are given in [3] (we assume that Gh = 

Go and Lh is defined by formula (3.2) together with (3.3) or (3.8)): 
1. Suppose c(P) > m > 0 in G, then we can take p(P) = -1/m. 
2. Suppose d(P) > m > 0 in G, then we take ,(P) = -(K + t/m), where K > 0 

is chosen so large that s(P) < 0 in G. 
3. If there exists an i such that Aj(P) > m > 0 and Ibi(P)I < M in G, then 

s(P) = K(exp(pxi) - K'), with p > M/m and K, K' sufficiently large, satisfies condition 
(i) of Theorem 2.1. 

V. Estimates of the Solutions of the Finite-Difference Problem. Let Lh be a 
finite-difference operator of positive type which has the form (3.2) for all P C Go. 
Let : = v(P, h)} be a family of mesh-functions defined for each h on Gh E {Goh 
and such that LAv(P, h) = f(P), V P E GO; 5(P) be the family of all difference quotients 
of order p of the functions of 5; G' be an arbitrary interior subdomain of G (i.e., 
G' C G' C G). Let the numbers m, be the same for all P E G. Let the coefficients 
ai1, bi, c, d E C(n+l'(G) and their derivatives of order (n + 1) be Lipschitz-continuous 
in G'. We intend to show that the condition (ii) of Theorem 2.1 is satisfied. 

We shall firstly prove the uniform boundedness of the sums h'+' ,Gh w2(P, h), 
where w are difference quotients of order ?n + 1 of the functions of 3, <1), 5; . To 
avoid complications in the proof, we will develop the argument only in the case n = 2. 

Let h be so small that GI C G'. Then, at each point P E Gh, we have 

(5.1) Lhv _i1L1,1,T + 01+12(V,1,2 + V,0,2) + a-12(v,1,2 + V,J,2) + a22V,2.3 

+ jV(v,1 + V,T)/2 + j2(V,2 + v,-)/2 - cv - dv1 = I, 

where 

al + h, + A12I +- all a1 + hal2 22 = a2 + h lal2| a+12 = a12, a.-12 = a12, 

and ai, f3i are defined by formula (3.3) or (3.8). 
Moreover, we shall assume that d 1 in G'. There exist constants m and M, 

such that for all P E GI we have 

0 < m < ai(P, h) < M, laii(P)l < M, I/3(P)I < M, i, j = 1, 2; 

(5.2) ic(P) I < M, if(P)| < M, IV(P, h) I < M for v E 5f 

for h small enough. We assume that M is also an upper bound for any of the difference 
quotients of aii, f3i, c, f of order <n + 2. We denote L'v = Lhv + v. 
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2C h2 F q2(I + IVA U12)r/2 IVA U, 12 

_ 2"'h2 E {22C42/C2 + (288Cj + 2C6 + 2C5) IVA,12/C2 

+ 2tq IVAtIl (Ca + C4)j(1 + IV, Ult) 

+ max{l, 2 }nh2 2 IVAnI nC5(1 + IVA UI). 

If we now choose 1I (P)I and IVA,(P)I to be bounded over II, then we have that 

n(l + tVAUI2)(wm2)/4 IVAUS,I E 12(Qh) for s = 1, 2. Our constant Ja is now estimated 
by the inequality 

C2J ? 4A{2m'(Ci + (l44C2 + C62 + C52) + C2(CS + C4)I(m&(f) + J'M) 

+ 2AC2 max{ , 2m)C1(mA(Q&%) + Jj (mA(QA))l'/), 

where A = (max{maxlnt, maxIV,A ID1. ) 

(b) If m = 2, we have 

C2(1IVA U.. 11 6C31{h2 
7 
2e1 IVA U.. 12 + h2 x; IVIl 12 IV 2 

+ Ch2 h 2 + 4h 1 (C6 IVAiI v I VA Ul' + C"m IV4UI) 
+ 2C4h2 X 1 IV,nI (1 + IVA.U2) 

+ C4e2h 
I 
V) U.. 12 /2 + C4h2 V j + %V Ut2)/2. 

Now choose e, = C2/24C, and ?2 C2/2C4 to get the estimate 

C2J5/2 ? 144(C32/C2)h2 E tVnI2 IVA U12 

(11) + Cth2 E 2 + cjh2 E q2( + IVUI)/C2 

+ 4h , (C6 IVA UIIVAUI + C5)11 IVh Ul 

+ 2C4h2 E ti I%VA.I (1 + VA Ut2). 

(c) Now apply the Holder Inequality to (10) to get 

C2(h2 E (1 + IVA U12)m/2)i n(h2 E nm IVA Ut I m)2/m 

? (h2 E {(12C3 IVAtI + qC6)(l + IVA Ul2) }/2)u/m )m/m tIn(VVU.1.)tt 

+ (h2 E { (1 + IV UV2)m'/2)mo/)m /(h2 E (t IV,U .)m)11 

+ Ch 2 + 4Ch 2 2VA.Il n(l + IV,Uj) 

+ 4Cth i 1 VAtI (1 + IVA UU2)"'"2 

Now apply the Schwartz Inequality to the first two terms on the right side of the 

above to get, taking e- = C2(h 2 E (1 + VA UI2r/2)jn/;"/2 and ?2 = ?1, 

(h E t IVAUZ. l)2/m < (2/C2)(h 2 E (1 + IV Ul2)h/2)-r/M Cth2 2 

+ (h 2 (1 + IVA U12)m/2)-./.n 

(12) *{(h2 {(12C3 IVAti + qC8)(1 + IVA UI2) } )2 

+ (h2 1I {1i(l + IVA,U2)W/2Ir/rn)2rn/ /C2 

+ 4C8h i IVAtiI n(l + VA U12) + 4C!h o: l Vhti (1 + IV4 Ut2)". 
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io 

hlh2 E [C(w) + C(w)] 
i-to 

i o 

= hlh2 E {-allww.l.T - allww,l,T + W,1(a-12W),2 
i-to 

+ W,T(a.-12W),2 - CZ-12WW,Y,. - a12WW,1,l - +2WW 2 

- a+12WW,T,2 + W,Y(a+12W),2 + W,1(a+12W),! + W,2(a22W),2 

+ W,!(a22W),2 - (t81ww, + fl3ww,i + fiww,1 + Oiww,y)/2 

+ (WQ32W),2 + W(2W),2)/2- (32WW,2 + 12WW,2)/2 + 2Cw21 

+11 WWJ 
+ 

2W+,W,2 + aX12WW,2 h2{c4+iW+iW,l + +YJWI a1w 

+ !+12WW,2i+ a+ri2W+ Wi + w + 
w + (1ww+ ]/2} Ii tO" 

Hence, 
to io' 

h1h2 E E [C(w) + C(w)] 
i-io i-iO 

_o# i o 
- -2h1h2 E 1J {a11ww,l,j + a1-12w(w,2,~ + W,y,2) + Cx+12W(W,1,2 + W,y,2) 

i-ito i-io 

+ a22WW,2,2 + (OIw(w,1 + W,) + 32w(w,2 + w,j)]/2 - CW2} 

+ h2 E X-[al - a1lW2 + (a11- -)w al] 
i io hi 

+ [a-12W W,2 + a-12WW,i + a+12W W,i + a+12wW],2 

+ ww+ (fj3+ + f31)/2} 

+ hi I [a22(w i)2- 22W2 +(a22 - C22bwWi] 
i-io h2 

+ [CYLi2WiW,1 + -12WW,i + a+12WW,i + +12W w,W] 

+ ww+i(Ql2+i + /2)/2} : 

The following inequalities hold: 
io 

h, fa [a1i2w+iW,l + a-12WWl]fi i:i,' 
i-io 

f io' 3o 

& [(aI-i12 - aIil2)W+tW+ + (ai-12 - ail2)Wi W] + Z-a12w iW+ijii:ii 
ti-it i-il 

iot 
<M 2 E {(h2 + h2)l/2[(w+i)2 + (w+i)2] + h [W2 + (w+i)2]} 

2to jo,.1o ' 

+- [(wi)2 + (w+i)2]; 2 i .j- i,jo 3 j-3i0 0o' 
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io 
0 

hi x [a+12ww+l + a+12W W, 1]| 7i 
i-io 

< M 
E E I12 + h 2)"12[(w+i+i)2 + w2] + h2 [W2 + (W+')2]} 

2 s-o j-5l,jo 

+ 2 E E [(W+i+i)2 + W2. 
2 i-ilioo ji-il,jO 

Therefore, 
io' iot 

hlh2 E E [C(w) + C(w)I 
i-io ifio 

io' io h so 

< -2hlh2 E X wLow + h q (c41(w+t) -_ aIw :i?. 
i-io i_o 1 i -o 

h io, io, 
+ 1 E [a+ (W+1)2- W2]ji +h2o2M [W2 + WTI3 + 22 [a(~'2-a22w ]I J-,+ 2 M E w +(,' 
h2 i-io i-jo -il,$oS 

is , 
[W2 + (W+i)23 +h1Y2-M Z [w+wi2 

i-io i-il tio # 55s 

+ 1 M E {(h2 + h2)1/2[(W+i)2 + (W+i)2 + (W+i+i)2 + w2] 2 i-io i-il wio' 

+ 2h2w2 + (w+ i)2]I 

+ lo 
2 ? {(h2 + h2)1/2[(W+i)2 + (w+i)2 + (w+i+i)2 + W2] 2 j_o s il io 

+ 2h,(w2 + (w+i)2]} 

+ M ? S [(W+i+)2 + w21. 
i-is ,io' fijs o' 

Summing from k ko to k = kl, we get 

'rh1h2 E ? [C(w) + C(w)] 
Qo 

S; - 2rhh2 E E wL w + rX( 2 W - allw') 
(5.4) Qosi Rio 

+ ar ES<22 W2 -? Ci22W2) 

+ ThIAl E w2 + rh1A W 2 + Mr E w2. 

Now, let 4 - i < iio, jo j j j,,. By summation by parts with respect to k, we get 
kol ko' 

(5.5) 2 
E (w2 + w2) 7 2r I wwa + [(w+k)2 - ik-ko 

k-ko k-ko 

Using the identity rw I=(w, + w1) - 2w1, we deduce, for io ? i ? io, jo 9 i 5 io, 
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ko kol 
2 WW - WW +k ko'- WWt 

k-ko k=ko 

> -- a?, [W2 + (W+k)2] - 2k T WW t 2 k-k ,ko' k-ko 

Taking this inequality into (5.5), we get 

r Z(w ? + w2) < 4rT wwi w +2 2 W2, 
k-ko k-ko k-k,ki, 

hence 

rklhh E E E (W2 + W2) C 4h1h2 wwt +- h2 
2 

W 
Qo Qo Si1 

Multiplying this inequality by r/2 and adding (5.4), we get 

rhlhs2 l [C(w) + C(w) + C(w + wt)] 

(6 2'rlh2 E E E w(L,w - wI) + rx( E alw- 
2 

all w) 

<5 .6) Qo s1 RILO 

+ ~E a22W - E a22W) 
R21 R2 0 

+ Ahl(A + -2 + E2E w2) + Mr E w2. 

The next step of the proof is to estimate rAAh2 , QO (W21 + W + 2 + W21) 

in terms of rhAh2 E E < Q, [C(w) + C(w)]. We have 

(5.7) rhlh2E E E [C(w) + C(w)] 3 D + E + F + H, 
QO 

where 

D- rhlh2 E E 2 [&8W2 + (a+l2 + a-+l2)W,lW,2 + (a+12 + CZ+12)W,jW,2 
Qo 

+ a22W,2 + &w + (aX12 + a_l2)W,iW,2 

+ (C+l2 + Ci+l2)W,lW,2 + aw22]; 

E = rhlh2 I E x w[al1,lw,1 + aZ12,lw,2 + 0112,2w,l + a+12,yw,2 + a+12,2w,y 
Qo 

+ a22,2W,2 + a011,W,Y + a-12,1W,2 + a-12,2WJ 

+ a+12,1W,2 + a+12,2W,1 + a22,Mw,2]; 

F= !7h1h2 W l w3,lw+' ,-f 31J,w-i + f2,2w'i + 02,2w+i]; 
Qo 

Hn 2(rlh2 , E E CW2 c O. 

Using (5.2), we deduce 
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D _ Th1h2 Ei E E [1lW,2i + 2(a+12 + a+12)t W,2 + XWi22) 

- D(a! h2 + a+a2)Q w2 + Xw22) 

+ a2i 2W,2 + a1w,2 + -(a42 + a:12)Q w1 + Xw2) 

- W_Q412 + aX+2)Q 1 + Xw22) + a2iw22] 

_ Thlh2m E Z Ej (w?i + w+y + w22 + w 2) 
QO 

because for h small enough, c22W-2( + 2- 1 12)/X > m; 

lEt ? 3MTh1h2 z z Z |wI (twit| + IW,2l + jw,lj + jw,2j) 

6M ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (w~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + + +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~2++a 

<- Thlh2 M W22Y IMKThih2 +W + W, +w) 
KC Qo Qo 

for any positive number K; 

<l < 2MTh1h2 ( w 2. 
Qi 

Using those estimates we deduce from (5.7) 

(m - 2MK)Th1h2 Ei: E E (W21 + W,2 + W2_ + w22) 

(5.8) Qo 

< rhlh2 E [C(w) + C(w)] + 2M(1 + )3Thlh2 2. 

Lemma 5.1 follows directly from (5.6) and (5.8) and the obvious fact that the 
preceding argument is valid for any I and not only I = 0. 

LEMMA 5.2. Let G" C G" C G'. Suppose that functions y and z defined on GI 
satisfy for any rectangle Q I C GI an inequality of the form: 

,rhih2 y2 

(5.9) ? z2TMo( E O - + rMl( Z 
2Z2 - 2Z2 

+ hlhM2( Z2 + Z_ Z2) + rhh2M3 E Zz2 + M4, 

where MO, M1, M2, M3, M4 are positive constants and where spl and 'P2 are positive 
boundedfunctions defined on GI. Then, we have the estimate 

(5.10) Thlh2 
E Y j y2 < Krhlh2 Z Z2 + K', 

GA" t Gh 

where the constants K and K' depend only on the constants MA, on the bound of the 
functions <p and <p2 and on the domains G' and G". 
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Proof. The proof of this lemma is a simple modification of the proof which is 
contained in Courant, Friedrichs and Lewy [1]. It is based on a double summation of 
inequality (5.9). 

LEMMA 5.3. If conditions (5.2) hold for n = 2, then the sums rh1h2 I 2h 2 , ,G w2 
for all w, which are difference quotients of order 5 S of the functions of 5, are uniformly 
bounded. 

Proof. We will study separately each of these sums. 
1. rh1h2 E E GA V2;. We put w = v in formula (5.3). Since Iv(P, h)I < M and 

ILhv(P, h)l = I f(P)l < M, it follows from Lemma 5.1 that 

(m- MK)rhih2 E E E (W21 + W2 + 2Y + W%) 

< 2M2 V(G) + rX( E allw2 - E E aw2) 
RI. +:L R, 

+ , -E a22W 
2 

E a )22 ) + rhi(A + ) 2 + E E w ) 

+ 2M(1 + 3}rhlh2 E E w2 + 16M3., 
K Q .+. 

where V(G) denotes volume of G, p--diameter of G. Taking y2 Ww21 + W22 + w2j + w2 

and z = w, we get the inequality of the form (5.9). Applying Lemma 5.2, we deduce 
that the sums Thh2 E E EGh' v,2i are uniformly bounded. 

2. rh1h2 I FI aGh vI2, . We take w, = v, 1. It follows from (5.1) that 

Lhwl = f, - aii,iwi,i -a+12,1(wl,i2 + w1,i) - a.12,1(wt,i + W1,2)-a22,IV +02 

- 131,1(wt+ + 
wl)/2 

- 132,1(V,2 + v,2)/2 + C,lV+. 

Therefore, using (5.2), we have 

ILW1lI'w1I _ M Iwji[l + M + IW1,1j + jW1+'2 + IW1,21 + jWI,2I 

+ IW1,2i + IV+,2i,fI + 2(1WuI + ItW+il + IV+,2i + 1V.21)]. 

Since 
2 

jwj| _ (1 + wl)/2, [wlI'1wl,,I < 2 + l2, lwll< O w, 1Wj11W1'1 
=2K 2 

1w11Iwt' ? 1(W2 + (Wt )2) 

and rh1h2 I E 
G,G, 

w 2, rThh2 E E EG4 
v22 are bounded, we have the inequality 

'rh1h2 Z jLhwlI'Iwl WI <- 1(K) 

+ - Mrh1h2 i E [v?,i + (vI1,2)2 + V,1, 2 + (v+; ,r)2 + V'1 i + (1<21,1)2]. 
2 Gh, 

Likewise, 
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rh,h2 13 E E jLhv,21 Iv.21 _ -I112(K) 
Ghl' 

+ 2 Mrh1h2 1 X 1 [V,2,2 + (v,2,i) + v,2,1 + (<21,T)2 + V,2,T + (vti',f)2]. 2 GA 1 

If we substitute these two inequalities in (5.3) and take 

Z2 =v + 2 2 V 1,1 + V211 + V21,2 + V21,2 + V2,1 + V2,1 + V2 + V2 

we get the inequality 

(m - MK)rhlh2 y Z 
- Mrh1h2 E E (ve1,2 + V21, + V22 + v1,2 + V,2,j + V2,ij) 

S +1 

? (K) + rA( ,I 1 aliz 2 aliz2) + 01( X 2 ? Za22z2) 
Ri. I+iL,2. 1+,R1 l+i R2z 

+ rh( + _ Z2 + EZ Z2) + 2M(1 + 3rhlh2 2 z2, 

For r small enough, 

Mrh1h2 x: E (v2,1,2 + 22 + + + V V,1,2 + V2 + V21,j) 
S j+' 

=-_ rhih2 Q 

therefore, we get an inequality of the form (5.9). Applying Lemma 5.2, we deduce 
that the sums rh1h2 E E EGy, v2, i are uniformly bounded for any G' C G' C G. 

3. rh1h2 2i 2i >GhA v 2. Formula (5.1) yields 

IvII ?< IfI + M[Iv,I,lI + IV,1,21 + 4v,14jl + IV,T,21 + IV,1,51 + IV,2,fl 

+ 2(IV.11 + Iv,J + IV,21 + jv,51) + fvf]. 

Therefore, the boundedness of the sums rhlh2 G A , v2, and 
rhih2 E EGA, v'i, 

implies the boundedness of the sums rh,h2 E E EGA V. 

The uniform boundedness of all sums Trhh2 E E I:Gk' w2 can be proved in the 
same way, after differencing Eq. (5.1). 

LEMMA 5.4 (SOBOLEV'S THEOREM). If the sums -r h.. hn EGh' w2(P, h) are uniformly 
bounded for all w(P, h) which are difference quotients of order < n + 1 of the functions 
of 5, then the family 5f is equicontinuous in any subdomain G" C G" C G'. 

Proof. The proof is a modification of the proof of Sobolev's theorem which is 
contained in [4]. 

We denote 

PO = (i?h1, . . 
I, 

ion, krT), P1 = (i 0hl, * *, ihn, k"T), 

R(Po) - {P = (i1h1, , nn, kr): i?; < ij < i7 (j- 1, * n), ko < k ? k"J, 

(i'i-i=)h = bi, (k" -k0)r = a. 

We take bi and a such that for each PO E G"' is R(Po) C G'. Let io < il < i"t. For 
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any function w defined on GI, 
il '-1 

= W, l. 

Applying Schwarz's inequality, we get 

[W1ii:i1:]2 
b i 

h2 W2 

therefore 
/*'1 1/2 

jwjj._j1oj '_ jw1j.-j.,j + (blhl )1/2t W,2 

Squaring both sides of this inequality and applying the inequality (a + b)2 ? 
2a + 2b1, we have 

il '-1 

(< 2(wIj. -)2 + 2b1h1 I WI1. 
i1-io 

Summing these inequalities for io < il < il', we obtain 
L il ' ~~~'-1 ti1' '-1 b, 
(Wlil_ilo)2 < 2 W2 +b2 E 2. 

h1 ii .il? it ii? 

Hence 

(wlii.ii o)2 < 2 - w2 + bl : WI I b, iililo iilsl? 

By induction we get 

h ill -I l - 
(WI ti..jilo,j2i2o)2 -< 2 b L (wi2._.2o)2 + bl 

2 
(w21)Ii2..io_ 

b il-il ? il ilo 

h1h2 '-C i2' '-1 < 4 bb2E E (W2 + b?2W2, + b 2W2 + b2b 2 W,2), 
b1b2 il-il? i2-i2oI2 

. 

and, for n, 

w(i?h,, i0 h ,n 
kT)2 

n+ * bh, ... hn 
illI 

in.1.2 
n 

2 
W2 + 2+ b 2 b 2 

b,... L,ni.iO i=n - 

For any function v C 5, 
k' '-1 

v(P1) - v(Po) -hT i 
hn, 

, i kT), 
k n? k=kO 

therefore 
k' -1 1/2 

fv(P1) - v(Po)l ? (aT)'2 E vz2(i?hl, i* h * * kT)) 
k(kO 

-< (aT2 
nh .. hn 

V2e 
+ 

E bp 2V2 p + 
. .+ b 2 ... b v2 )12 
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The assumption of the lemma implies the equicontinuity of the functions v EC 5 
with respect to t. In the same way, we can show the equicontinuity with respect to 
each variable; therefore the functions of 3Y are equicontinuous. 

THEOREM 5.1. Let G C R3 and let the coefficients of the operator L be of the class 
C3(G) and their third derivatives be Lipschitz-continuous in any G' C G' C G, and let 
Vh ? ho VP C Gh Lhv(P, h) = f(P). Then, any sequence {v(P, hj); h + 0 1 C T 
admits a subsequence which converges uniformly in G' to a solution of the differential 
equation Lu = f. 

Proof. If the assumptions of the theorem are satisfied, we can apply Lemma 5.3. 
Then, Lemma 5.4 shows that v, vj,, v ij,, v, are equicontinuous in GI for h small 
enough. G' is covered by cubic cells of the mesh; by linear interpolation in these 
cells, we can extend the equicontinuous family 5F of the mesh-functions into an 
equicontinuous family defined on all of G'. 

The theorem follows by application of Ascoli's theorem to the families F, W1" and 
&(2) and because of conditions (3.9). 

VI. Existence of Discrete Barriers. Throughout this section, we study various 
types of local conditions on G and on Lh which guarantee the existence of a strong 
discrete barrier. 

Let Q = (xl, xo, t?) C r, and assume that there exists a neighborhood NQ of Q 
such that Gh r, NQ C Gh for h small enough. 

1. Assume that: the coefficients of the operator L are uniformly continuous in 
NQ; limpQ [a,,(P)a22(P) - a 2(P)] > 0 and there exists a nondegenerate sphere 
through Q whose intersection with G is the single point Q and whose center is not on 
the straight line xl = xl, x2 x2. 

Then, there exists a strong discrete barrier at Q. 
Proof. Let us take the origin of the coordinates at the center of the sphere and let 

s = xl + X2 + t2, SO = S(Q) = (XO)2 + (XO)2 + (t0)2. 

Let k and p be positive constants and B(P, Q) = k(sv' - s- D). This is the barrier 
defined by Jamet [3] for the operator without mixed derivatives, but it can also be 
defined in the more general case. 

This function satisfies condition (2.3a, b). Moreover, we have 

(6.1) LB(P, Q) = 2kps-12{2(p + 1)(al x1 + 2al2xlx2 + a22 ) 

-s(all + a22 + blxl + b2x2 - dt)l - cB(P, Q). 

In a certain neighborhood of Q we have xl > (xO)2, x2 > I(xO)2 and there exists 
ao such that v i, V j, a,,t2 + 2al2t7 + a2272 > ao(42 + n2). Therefore, 

LB(P, Q) _ 2kps -2{(p + 1)ao[(XO)2 + (xO)2] - s(all + a22 + blxl + b2x2 -dt). 

It follows that LB(P, Q) can be made arbitrarily large in NQ, provided we choose 
k and p large enough. In particular, we can choose k and p such that 

LAB(P, Q) + E(P) = LB(P, Q) - c(P) + O(h) > 1 

in NQ, for h small enough. Thus, B(P, Q) is a strong discrete barrier at Q. 
2. If the coefficients of the operator L are uniformly continuous in NQ and Lh is 

consistent with L in the norm C,(NQ,), limp_Q [a,l(P)a22(P) - a2(P)] = 0 (but not 
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all coefficients aii vanish on the boundary) and there exists a sphere through Q whose 
intersection with G is the single point Q and whose center is not in the plane 
a,i(Q)(x - x?) + a22(Q)(x2 - x?) = 0, then B defined as before is the discrete 
barrier in Q. 

Proof. Suppose all(Q) 0 0. In a certain neighborhood of Q we have 

allx2 + 2al2X1x2 + a22x2 > 2[a, (Q)(x?)2 + 2a12(Q)XX + a22(Q)(x2)] 

= 
[a,i(Q)xo 

+ a22(Q)xo ]2/2aij(Q) 
> 0. 

From this inequality and from (6.1) we deduce that B is the discrete barrier. 
3. Assume that the coefficients of the operator L are uniformly continuous and 

that Lh is consistent with L in the norm C,(NQh). Assume d(Q) > 0 and that there 
exists a nondegenerate sphere through Q with radius R > (all(Q) + a22(Q))/d(Q) 
whose intersection with G n NQ is the single point Q and whose center lies on the 
half-line xi = x?, x2 = x?, t < t0. 

Then, B, defined as in 1, is a strong discrete barrier. 
Proof. 

LB(P, Q)- 2kps~p~2[2(p + 1)(alx + 2al2xlx2 + a22x ) 

- s(all + a22 + blxl + b2x2 - dt)] - cB(P, Q) 

> 2kpsPl[dt - (a,1 + a22 + bix, + b2X2)] 

> 2kps-NP-1[Rd(Q) - a11(Q) - a22(Q)] > 0 . 
P-_Q 

Then, B is a strong discrete barrier. 
The two following sufficient conditions are contained in [3]. 
4. Assume that there exists a neighborhood NQ of Q such that G r) NQ lies in 

the half-space t > to. Assume that the coefficients of the operator L are bounded, 
except d which may be unbounded, d(P) > k(t - tO) , a < 1 k > 0. Let L4 be the 
operator corresponding to formulas (3.3) or (3.8). Then, there exists a strong discrete 
barrier at Q. 

5. Suppose that there exists a neighborhood NQ of Q such that G n NQ is a 
cylinder parallel to the t-axis. Let us write L = LO- d(O/t); Lo is an elliptic operator 
in space variables. Suppose that there exists a function BO(P, Q) which does not 
depend on t and which is a strong discrete barrier for the family of operators Loh for 
any t such that It - t10 < q, where q > 0 is a constant independent of hl, h2. Suppose 
d(P) is bounded. 

Then, the function B(P, Q) = KBo(P, Q) -(t - t0)2 is a strong discrete barrier 
for the family {L} . 

Example 1. Let {(xl) be a convex function defined for all real xl and such that 
kt{(xl) - ,(x'')/Ix, - xl'I < Mfor all xl and x"' 0 xl, where Mis a positive constant. 
Let e be the curve Y x2 - s6(x) =0 in the plane t = 0. Let Go be a bounded 
simply-connected plane domain whose boundary consists of a portion of C and of a 
smooth curve which lies entirely in the region Y > 0. Let G = Go X (0, T), and 
Gf= G n( {P (xl, X2, t): Y > e}. Let r2 = (P = (xl, x2, 7) E dG} and 
ri= G- r2. Let 
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a2 a2 a2 a9 a9 a9 (6.2) L = all 2 + 2a12 aX + a22 aX2+ bi - + b2 ax1 a1 aX2 a2 ax, ax2 at' 
where 

all - hi 1a12 I/h2 > q, a22 - h2 ja12l/h, > q h2Ih2 

(6.3) b1, b2 C C4(G), bi, b2 E CGf, 

[b2(P) + h2b2(P)/h2]12 < qk/ Y + K, 

O < k < h2/hi, K > O. 

Let Lh be the operator defined by formulas (3.2) and (3.3). Then, the problem 
(1.3) has a unique solution u(P) and v(P, h) converges uniformly to u(P) in G as h -O0. 

The proof will be performed for a square net h, = h2= h; by the transformation 
of the variables x2 = (h2/hl)x2, i7(xj) = (h2/hi)4(x1); one obtains the general case. 

Under our assumptions, Lh given by (3.2) and (3.3) is positive. For instance, the 
coefficient 

A(P, P + elh) = [all(P) - JaI2(P)I1 + b 1(P) 

= h2 - 2 Yh = h2 (1 2 Y 

since at each interior mesh-point there is Y > h. 
The existence of discrete barriers at the points Q E r1 l- e X [0, T] follows from 

our third sufficient condition. The discrete barrier for {Lo,} at Q = (xl, x?, t0) E e X 
[0, fl is 

Bo(P, Q) = -(x1 - X0)2 _ yl, wherek < k' < 1. 

This function has the properties required for the application of our fifth sufficient 
condition. 

The existence of a function p(P) satisfying condition (i) of Theorem 2.1 follows 
from the second sufficient condition in Section IV. Theorem 7.1 implies that the 
solution of problem (1.3) with the operator (6.2) is unique. Therefore, we can apply 
Theorem 2.1, which concludes the proof. 

Example 2. Let Go be a convex domain in the plane t 0 such that in the neighbor- 
hood of any point QO E aGo, aGo admits a representation of the form x2 = (p(xi) or 
of the form xi = s6(x2), where p and * are convex functions. Let G = Go X (0, T), 
r2 = {P = (xI, x2, T) C aG} and rI = G- r2. Let L be the operator (6.2), where 

h,h >q2, b1b2C4(G), 
all- j-a121 > q, a22 - 

1al2i > q h2 bl b2 EC 

(6.4) V p E G, [b(P) + h b2(P)] < qk/d(P, dG) + K, 

O < k < h2/(h2+ h2)1/2, K > 0. 
Let Lh be defined by formulas (3.2) and (3.3) and let v(P, h) be a solution of 

problem (2.3). Then, the problem (1.3) has a unique solution u(P) and v(P, h) -* u(P) 
uniformly in G as h -O 0. 
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Proof. Same as in Example 1. 

VII. Uniqueness of the Solution of the Differential Problem. We denote by rF 
the set of all points Q = (x, ... x, , t?) C aG which admit a neighborhood NQ 
such that aG C NQ lies in the plane t1=t, and G C NQ lies in the half-space t < to. 
For any Q E G we denote by S(Q) the set of all points P E G which can be joined 
with Q by a continuous curve lying entirely in G along which the coordinate t does 
not decrease from P to Q. 

LEMMA 7.1 (THE MAXIMUM PRINCIPLE FOR PARABOLIC OPERATORS). Let L be a 
parabolic operator (satisfying conditions (1.2)) whose coefficients are continuous in G. 
If Lu ? 0 (Lu 0 0) in G and u has a positive maximum (negative minimum) in G which 
is attained at the point PO, then u(P) = u(Po) for all points P E S(Po). 

This theorem is proved in [2]. 
We deduce at once from the maximum principle the following 
THEOREM 7.1. If r2 C r', then problem (1.3) has at most one solution. 
THEOREM 7.2. A necessary condition for the existence of a solution of problem (1.3) 

for arbitrary g E C(G) is 

(7.1) rFf U [S(Q)w = 0. 
Qer,rnr' 

Proof. If (7.1) does not hold, then there exists a point QO E I rC\ r' for which 
ri f[S(Qo)]f # 0. Suppose that g, and g2 are functions such that g1(Qo)-92(Qo) > 

gl(Q) - g2(Q) for Q # QO and g1(Qo)- g2(QO) > 0. If 

Lu1 Lu,=f 
and 

Ulr1 = gilr. U21r, 921 r, 

then L(ul -u2) = 0 and (ul- u2) r,- = (g1 - g2) r -. It follows from our assumptions 
that ul(Q) -U2(Q) = gl(QO) - g2(QO) for Q E r, n [S(Qo)]f. This is a contradiction. 

If r' C F2, then the condition (7.1) holds. From now on we will assume r' C r2 

and we define r"l = r2- rt. 
THEOREM 7.3. Suppose rF" is closed and suppose that there exists a neighborhood 

N of r" and a function U(P) such that 

U E C(Go - r"), U E C2(Go), where GO = G n N; 

(7.2) LU(P)< O, PeGO; 

U(P)-?+ o asP- Q, v QEI" r,PC GO - r1 . 

Then, the problem (1.3) has at most one solution. 
The proof is contained in [3]. 
We give two examples as applications of Theorem 7.3. 
Example 3. Let G lie in the intersection of the half-space E"i-_ aixi > 0 and the 

slab t1 < t < t2. Let L be the operator (1.1) and assume that there exists a constant 
K ? 0 such that 

n /n/n \- 

Eabi(P)/ aaiai(P) > Eaixi) K 

for all P E G, and for a aixi small enough. 
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Let r" - aG (- {P - (x,, ... , Xn, t): E a1xi = 0}. Then, problem (1.3) has 
at most one solution. 

Proof. Let 

U(P) -K,( atx) - In( aixi), where K1 > K. 

We have 
n 

/a 
n \-2 /n 

LU(P) = 2 a,(P)a a,(( aix4X - , bt(P)at( K + I/ ; x;) cU 

< asi(P)axia{KKI + (K- K,)(Zatxt) 1 < 0, 

if a lcx1 ? (K1 - K)/KK1. Then, the assumptions of Theorem 7.3 are satisfied. 
Example 4. Let G lie in the half-space t> O, r" = aG r) {P = (xl, * , xn,, 0)}. 

Suppose that there exists a number o < 1 such that d(P) ? ta and that there exists i 
such that a;,(P) > e for t small enough. 

Then, problem (1.3) has at most one solution. 
Proof. Let U(P) = -x2 - In t. Then 

L U(P) = -2a;,(P) + d(P)t-1 5 -2e + t?-1 < 0 

for t sufficiently small. Thus, the assumptions of Theorem 7.3 are satisfied and the 
solution of problem (1.3) is unique. 
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